Abstract

Chemical vapor deposited (CVD) silicon carbide (SiC) provides many advantages over other materials due to its high thermal, chemical and mechanical stability at high temperature. For these reasons, CVD SiC has replaced Si in components for semiconductor process. For application of CVD SiC to semiconductor fabrication equipment, thermoelectric properties controls are important. Therefore, we have studied the effects of different diluent gases, deposition temperatures and microstructures of deposited SiC on change of thermoelectric properties. The electrical conductivity of SiC which used N2 diluent gas was larger than SiC deposited with H2 diluent gas. Electrical resistivity varied by an order of 102 for different diluent gases at the same deposition temperature, and Seebeck coefficient also depended on the gas used. Additionally, SiC deposited with H2 showed n-type semiconductor behavior while that deposited with N2 showed p-type characteristics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call