Abstract

CVD-SiC and sintered SiC (SPS-SiC) were proton irradiated at 340 ̊C receiving different levels of damage (0.05–0.25 dpa). A novel multi-step machining and measurement method using laser flash analysis (LFA) was developed to derive the thermal conductivity of the irradiated layer (∼46 µm). Before irradiation, the thermal conductivity of SPS-SiC was much lower than CVD-SiC, primarily due to its higher intrinsic defect concentration and smaller grain size which provide a greater density of barriers to phonon transmission. Following irradiation, major thermal conductivity degradation (∼90%) was found to occur to both types of SiC after only a low dose (∼0.1 dpa), with both saturating at a similarly low value (a few W/K⋅m), as the thermal resistivity due to the presence of high density of grain boundaries became less important. Thermal conductivity degradation after irradiation was primarily caused by point defects in both types of SiC, as reflected by Raman spectra.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call