Abstract
This paper aims at studying the machinability of 2D C/SiC composite with 0°/90° woven carbon fibers using a resin bond diamond grinding wheel. The effects of grinding parameters on the grinding force, force ratio, specific grinding energy, surface topography, surface roughness, and grinding chips were investigated. And the grinding mechanism of the 2D C/SiC composite was discussed by analyzing the chip components and material removal characteristics. The results indicate that the grinding force and surface roughness increase with the increase of feeding speed and depth of cut, while decrease with the increase of wheel speed. The force ratio F n /F t and the specific grinding energy of 2D C/SiC composite were lower than those of conventional ceramics under the defined experimental conditions. Additionally, the grinding chips were composed of carbon powder, carbon fiber fragments, and SiC matrix debris. It can be deduced that the dominant removal mechanism of the 2D C/SiC composite was brittle fracture mode during grinding process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The International Journal of Advanced Manufacturing Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.