Abstract

The thermal stability of the superconducting phase of nominal composition YBa2Cu3O7−x-sintered pellets has been studied with respect to different temperatures (ranging from 300 to 950° C), time (ranging from 1 to 72 h), oxygen partial pressure (from 4 Pa to 1 atm) and carbon dioxide partial pressure (from 10−4 Pa to 1 atm). Annealed samples were characterized by X-ray diffraction analysis, optical microscopy, and resistive measurements of the superconductive transition temperature. A stability field of the orthorhombic and tetragonal phases was obtained, showing a region of coexistance. The decomposition of the 1 2 3 phase is found to be strongly influenced by the presence of a small amount of CO2 (1 p.p.m.) in the sintering atmosphere. A sintering process is proposed to avoid the formation of by-products.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.