Abstract

The spatial distribution patterns of the nitrogen and phosphorus input/intake amounts in crop production within two small basins are examined, based upon a cropping unit distribution map that is obtained from remote sensing data analysis. Firstly, we examine the availability and suitability of approaches to the spatial distribution analysis of cultivation patterns classified from material flow characteristics of crop production using seasonal remote-sensing data. Secondly, material flow units in crop production are grouped according to the cultivation patterns obtained from the remote-sensing data analysis. Consequently, the spatial patterns of the amounts of both nitrogen and phosphorus inputs/intakes through crop production on farmland are examined and their spatial distribution maps are prepared according to the material flow units. In addition, we developed a nitrogen flow and runoff model and the model is simulated based on the examination of the results of spatial distribution patterns of the material flow units. The annual nitrogen runoff from small catchments, where various crops are cultivated, varies from 2.7 kg ha(-1) year(-1) to 108 kg ha(-1) year(-1) and the annual balanced losses of nitrogen in small catchments varied from -30 kg ha(-1) year(-1) to 101 kg ha(-1) year(-1). Also, the monthly changes in soil nitrogen of each material flow unit is estimated at -55 kg ha(-1) as a maximum decrease and 114 kg ha(-1) as a maximum increase. These results indicate that the spatial distribution patterns of nutrient input and intake through agricultural activities should be considered when analyzing the material flows and nutritient movement in soil-water systems in rural areas for watershed environmental control and regional agricultural management.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call