Abstract

The compaction of pharmaceutical powders can be simulated using phenomenological elasto-plastic continuum models adopted from soil mechanics. These models are typically implemented in finite element codes and have been used recently to investigate the macroscopic property distributions in powders during compaction. The present study demonstrates the importance of obtaining accurate yield surface parameters for use in such models. A commercial finite element code implementing the Drucker–Prager Cap (DPC) model was used to model the compression and decompression stages of powder compaction in a tabletting operation. The parameters used in the DPC model were obtained from the literature. Although the compression stage of the process gave expected behavior, the decompression response was unrealistic for at least one set of published data. Small values for the friction and cohesion parameters resulted in a significant elastic recovery during decompression. This study demonstrates the need to obtain accurate parameter data in order to model the decompression stage of powder compaction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.