Abstract
We performed a study on the scalability of Ovonic Threshold Switching (OTS) devices using an amorphous chalcogenide material, Ge0.4Se0.6. As the cell size decreased, the maximum driving current was estimated to be over 3 × 10 7 A/cm 2 , surpassing the state of the art devices based on crystalline Si. However, the threshold voltage (VTH), the holding voltage (VH), and the holding current (IH) were observed to increase laying challenges to be resolved for developing non-destructive and low-power consuming selector devices. VTH was found to be reduced by decreasing the thickness of GeSe film until 40 nm, below which it started to saturate. This might be associated with the Schottky barrier formed at the interface between the amorphous semiconductor and the metal electrode.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.