Abstract
Early identification of patients at risk of hospital-acquired urinary tract infections (HA-UTI) enables the initiation of timely targeted preventive and therapeutic strategies. Machine learning (ML) models have shown great potential for this purpose. However, existing ML models in infection control have demonstrated poor ability to support explainability, which challenges the interpretation of the result in clinical practice, limiting the adaption of the ML models into a daily clinical routine. In this study, we developed Bayesian Network (BN) models to enable explainable assessment within 24h of admission for risk of HA-UTI. Our dataset contained 138,250 unique hospital admissions. We included data on admission details, demographics, lifestyle factors, comorbidities, vital parameters, laboratory results, and urinary catheter. Models developed from a reduced set of five features were characterized by transparency compared to models developed from a full set of 50 features. The expert-based clinical BN model over the reduced feature space showed the highest performance (area under the curve = 0.746) compared to the naïve- and tree-augmented-naïve BN models. Moreover, models developed from expert-based knowledge were characterized by enhanced explainability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.