Abstract

Tungsten carbide (WC) is an extremely hard and difficult-to-cut material used extensively in manufacturing because of its superior wear and corrosion resistance. Besides diamond-charged grinding wheels, micro-EDM is an effective method of machining this extremely hard and brittle material. Since micro-EDM is more generally an electro-thermal process, the supplied energy from a pulse generator is an important factor determining the performance of the micro-EDM process. This study investigates the influence of major operating parameters on the performance of micro-EDM of WC with focus in obtaining quality micro-holes in both transistor and RC-type generators. Experimental investigations were conducted with view of obtaining high-quality micro-holes in WC with small spark gap, better dimensional accuracy, good surface finish and circularity. In micro-EDM, the fabrication of micro-parts requires minimization of the pulse energy supplied into the gap which can be fulfilled using the RC-generator. It was observed that the RC-generator can produce better quality micro-holes in WC, with rim free of burr-like recast layer, good dimensional accuracy and fine circularity. Moreover, the smaller debris formed due to low discharge energy in RC-type micro-EDM can be easily flushed away from the machined area resulting in surface free of burr and resolidified molten metal. Therefore, RC-type micro-EDM could be more suitable for fabricating micro-structures in WC, where accuracy and surface finish are of prime importance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.