Abstract

A number of batch polymerizations were performed to study the effect of pristine nanoparticle loading on the properties of PMMA/silica nanocomposites prepared via RAFT polymerization. In order to improve the dispersion of silica nanoparticles in PMMA matrix, the silanol groups of the silica are functionalized with methyl methacrylate groups and modified nanoparticles were used to synthesize PMMA/modified silica nanocomposites via RAFT polymerization. Prepared samples were characterized by thermogravimetric analysis (TGA), dynamic light scattering (DLS), dynamic mechanical thermal analysis (DMTA), differential scanning calorimetry (DSC) and gel permeation chromatography (GPC). According to results, introduction of modified nanoparticles results in better thermal and mechanical properties than those of pristine nanoparticles. Also, surface modification and increasing silica nanoparticles result in variation of thermal degradation behavior of nanocomposites. The best improvement of mechanical and thermophysical properties is achieved for nanocomposites containing 7 wt. % silica nanoparticles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.