Abstract

It is well-known that the hypothalamus predominantly exerts an inhibitory control on prolactin secretion and that dopamine (DA) is the main prolactin inhibiting factor (PIF). In addition, the hypothalamus contains prolactin-releasing factors (PRF). Thyrotropin-releasing hormone (TRH), vasoactive intestinal polypeptide (VIP) and peptide-histidine-isoleucine (PHI) are the components of PRF. However, the detailed mechanism by which the peptides release prolactin (PRL) at the pituitary level is still unknown. Therefore, in this paper, an in vitro perifusion system using the cell column of cultured rat pituitary cells attached on Cytodex beads was employed to investigate the mechanism of PRL release. The rat anterior pituitary cells were isolated using collagenase, and the dispersed pituitary cells were cultured with swollen Cytodex beads in Dulbecco's modified Eagle medium (DMEM) containing fetal calf serum at 37 degrees C in 5% CO2 and 95% air for 2--3 days. The cultured anterior pituitary cells attached on Cytodex beads were packed in a column and perifused with DMEM at a constant flow rate of 0.4 ml/min using a peristaltic pump. The following results were obtained. A five minute perifusion with 100 pg/ml to 100 ng/ml TRH caused a significant increase of PRL in a dose-related manner. A continuous perifusion with 2 ng/ml or 10 ng/ml DA inhibited PRL release in a dose-related manner. When TRH at a dose of 1 ng/ml, 10 ng/ml or 100 ng/ml was perifused for 120 min at a rate of 0.4 ml/min, a large amount of PRL was released during the early period of the TRH infusion, and then the PRL release gradually decreased to the basal levels in spite of the continuous TRH infusion. An additional TRH, of which the concentration was ten-fold higher than the TRH level in the continuous infusion, when added at the end of the continuous TRH infusion, had no effect on PRL release. On the other hand, a 5 minute TRH infusion given at 30 min after the end of the continuous TRH infusion caused a significant increase in PRL release. A continuous perifusion with 1 mM 8-bromo-cyclic AMP caused a small but continuous PRL release. An additional continuous 8-bromo-cyclic AMP infusion during the late period of a continuous TRH infusion caused a continuous PRL release similar to that induced by the continuous infusion of cyclic AMP only. A short period perifusion with 1 X 10(-9)M to 1 X 10(-7)M of vasoactive intestinal polypeptide (VIP) enhanced a significant increase of PRL release in a dose-related manner, but the amounts of PRL release induced by VIP were smaller than those induced by TRH.(ABSTRACT TRUNCATED AT 400 WORDS)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call