Abstract

A design methodology was applied to manufacturing a tub for washing machine container. The finite element method was employed to investigate the forming process. The forming process of sheet metal into a tub for washing machine container was selected as a model process to demonstrate the design of improved process sequence which has fewer operation stages than in conventional process. The design procedures made extensive use of the finite element method which can deal with elastic-plastic modeling. A one stage process sequence to form an initial blank to final product has been simulated to obtain information on metal flow requirements. Loading simulation for conventional manufacturing process sequence has been also simulated to evaluate the design criteria. From the simulation results of conventional process sequence, it is concluded that the design criteria should include thickness uniformity in finished tub and maximum punch load within the limit of available press capacity. The newly designed sequence has two forming operations and can achieve net-shape manufacturing, while the conventional process sequence has three forming operations. The design procedure proposed in this study could be considered for the method applied to the development of process sequence design in general.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call