Abstract
The continental shale oil resource in China exhibits significant potential and serves as a crucial strategic alternative to the country’s conventional oil and gas reserves. The efficacy of shale oil exploration and production is heavily contingent upon the heterogeneity of the pore structure within the reservoir. However, there remains a scarcity of research pertaining to the pore structure of continental shale and the factors that influence it. The objective of this study is to provide a quantitative characterization of the heterogeneity exhibited by the continental shale of the Funing Formation in the Gaoyou Sag. In this study, the research focus is directed toward the continental shale of the Funing Formation located in the Gaoyou Sag of the Subei Basin. This paper examines the correlation between the fractal dimension of nuclear magnetic resonance (NMR) and various factors including the total organic carbon (TOC), mineral composition, geochemical parameters, and physical properties, utilizing the principles of fractal dimension theory. The findings indicate that the primary pore types observed in the Funing Formation continental shale are inorganic matrix pores, which encompass dissolution pores, clay mineral intergranular pores, and a limited number of pyrite intergranular pores. By employing a relaxation time cutoff, the NMR fractal dimension can be categorized into two distinct dimensions: the bound-fluid-pore fractal dimension (0.5795~1.3813) and the movable-fluid-pore fractal dimension (2.9592~2.9793). The correlation between mineral composition and the fractal dimension indicates a negative relationship between the fractal dimensions of bound-fluid pores and movable-fluid pores and the content of quartz. The correlation between clay minerals and the fractal dimension indicates a significant negative relationship between the fractal dimensions of bound-fluid pores and movable-fluid pores with illite. There exists a negative correlation between the pore fractal dimension of bound fluid and the content of organic matter, whereas a positive correlation is observed between the pore fractal dimension of mobile fluid and the content of organic matter. The range of maturity of organic matter within the Funing Formation exhibits a relatively limited span, as indicated by the vitrinite reflectance (Ro) values falling between 0.8% and 0.9%. This narrow range of maturity does not exert a substantial influence on the two fractal dimensions. The NMR fractal dimension exhibits a negative correlation with permeability in relation to reservoir physical properties, while the bound-fluid-pore fractal dimension demonstrates a negative correlation with the total porosity. The findings suggest that the NMR fractal dimension can serve as a valuable indicator for evaluating the physical characteristics of reservoirs. The present study successfully examined the pore structure of continental shale through the utilization of nuclear magnetic resonance technology. This innovative technique provides a novel avenue for the assessment of continental shale reservoirs and the investigation of pore heterogeneity on a global scale.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.