Abstract

Let B(n,p) denote a binomial random variable with parameters n and p. Vašek Chvátal conjectured that for any fixed n≥2, as m ranges over {0,…,n}, the probability qm≔P(B(n,m/n)≤m) is the smallest when m is closest to 2n3. This conjecture has been solved recently. Motivated by this conjecture, in this paper, we consider the corresponding minimum value problem on the probability that a random variable is not more than its expectation, when its distribution is the Poisson distribution, the geometric distribution or the Pascal distribution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.