Abstract

Abstract This paper was presented to determine the methanol crossover and efficiency of a direct methanol fuel cell (DMFC) under various operating conditions such as cell temperature, methanol concentration, methanol flow rate, cathode flow rate, and cathode backpressure. The methanol crossover measurements were performed by measuring crossover current density at an open circuit using humidified nitrogen instead of air at the cathode and applied voltage with a power supply. The membrane electrode assembly (MEA) with an active area of 5 cm2 was composed of a Nafion 117 membrane, a Pt–Ru (4 mg/cm2) anode catalyst, and a Pt (4 mg/cm2) cathode catalyst. It was shown that methanol crossover increased by increasing cell temperature, methanol concentration, methanol flow rate, cathode flow rate and decreasing cathode backpressure. Also, it was revealed that the efficiency of the DMFC was closely related with methanol crossover, and significantly improved as the cell temperature and cathode backpressure increased and methanol concentration decreased.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.