Abstract

Multi-item and small-lot-size production modes lead to frequent setup, which involves significant setup times and has a substantial impact on productivity. In this study, we investigated the optimal flexible job-shop scheduling problem with a sequence-dependent setup time. We built a mathematical model with the optimal objective of minimization of the maximum completion time (makespan). Considering the process sequence, which is influenced by setup time, processing time, and machine load limitations, first, processing machinery is chosen based on machine load and processing time, and then processing tasks are scheduled based on setup time and processing time. An improved quantum cat swarm optimization (QCSO) algorithm is proposed to solve the problem, a quantum coding method is introduced, the quantum bit (Q-bit) and cat swarm algorithm (CSO) are combined, and the cats are iteratively updated by quantum rotation angle position; then, the dynamic mixture ratio (MR) value is selected according to the number of algorithm iterations. The use of this method expands our understanding of space and increases operation efficiency and speed. Finally, the improved QCSO algorithm and parallel genetic algorithm (PGA) are compared through simulation experiments. The results show that the improved QCSO algorithm has better results, and the robustness of the algorithm is improved.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call