Abstract
In this paper, a method of modeling a seat belt on a crew seat during a dynamic seat testing was studied. The body segments of the occupant were modeled with joints that consisted of various stiffness, damping, and friction. Three types of seat belt restraint systems were investigated and an analysis on the injury assessment of the helicopter’s crew under a drop impact was conducted. The effectiveness of the seat belt system for crashworthiness and safety was likewise evaluated. From the impact analysis results, it was determined that the head, neck, and spine of the crew body can be easily damaged in the vertical direction more than the longitudinal direction. Based on the verified model, the human body’s behavior was studied using three point restraint systems. The displacement and injury level of the 12-point restraint system was the smallest.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.