Abstract
Polyvinyl alcohol (PVA), a versatile polymer, is extensively used across many industries, such as chemicals, food, healthcare, textiles, and packaging. However, research on applying PVA to triboelectric nanogenerators (TENGs) remains limited. Consequently, we chose PVA as the primary material to explore its contact electrification mechanisms at the molecular level, alongside materials like Polyethylene (PE), Polyvinylidene fluoride (PVDF), and Polytetrafluoroethylene (PTFE). Our findings show that PVA has the highest band gap, with the smallest band gap occurring between the HOMO of PVA and the LUMO of PTFE. During molecular contact, electron transfer primarily occurs in the outermost layers of the molecules, influenced by the functional groups of the polymers. The presence of fluorine atoms enhances the electron transfer between PVA and PTFE to maximum levels. Experimental validation confirmed that PVA and PTFE contact yields the highest triboelectric performance: VOC of 128 V, ISC of 2.83 µA, QSC of 82 nC, and an output power of 384 µW. Moreover, P-TENG, made of PVA and PTFE, was successfully applied in self-powered smart devices and monitored human respiration and bodily movements effectively. These findings offer valuable insights into using PVA in triboelectric nanogenerator technologies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.