Abstract

RecA plays an important role in homologous recognition in prokaryotes, and it has become a hot point in homologous recognition related research since its discovery. We establish an assay by combining total internal reflection fluorescence and flow stretching to visualize in real time the motion of single RecA-ssDNA filaments which are tagged with fluorescent beads. This enables us to study the interaction of RecA-ssDNA filaments with their templates in the homologous recognition process. It is found that the searching and binding is a short-time (τ=0.2 s) and short-distance (l=1.05 μm) process. Two distinguished motion modes for the RecA-ssDNA filament are observed, a Brownian motion and a directed motion. The observations suggest a model that a RecA-ssDNA filament just interacts weakly with the template DNA before it binds firmly to the template DNA. If no homologous site is found in a searching process, the filament drops off the template and repeats the searching process again until it finally finds its target.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.