Abstract

PurposeThe electron beam melting (EBM) Ti-6Al-4V material technology has been developed over a short time period. It was introduced through a research to develop Ti-6Al-4V implants for patients, but EBM printed locking compression plates have not been used for clinical implants. The main purpose of this study is to find whether the EBM Ti-6Al-4V plate suit for clinical implants.MethodsFirst, we scanned an AO-locking compression plate (LCP) and printed LCP samples using EBM. Next, we evaluated the EBM plate surface roughness through optical microscopy as well as the LCP and EBM plates’ mechanical characteristics using the ASTM standard, which is commonly used to test the mechanical properties of bone plates subject to bending. Each sample was examined using a single-cycle four-point bending test and hardness testing to acquire data on bending stiffness, bending strength, bending structural stiffness, and hardness.ResultsThe results show significant differences in bending stiffness, bending strength, bending structural stiffness, and hardness between the samples using EBM and the original LCP plates. The EBM-printed samples’ surface roughness was 0.49 ± 0.02 μm. The mean hardness of the LCP sample was 266.67 HV10 ± 5.8, and the EBM-printed sample mean hardness was 341.1 HV10 ± 1.93. The EBM samples’ bending stiffness was 87.67%, which is greater than using the LCP plates’; and the bending strength was 190.7% greater, the bending structural stiffness was 73.2% greater, and the hardness was 27.9% greater.ConclusionsThe results show that the EBM plates’ general mechanical strength was significantly greater than the LCP plates. An EBM plate is advantageous for clinical implants because it can be customized with great potential for improvement.

Highlights

  • The locking compression plate (LCP) is part of the newest generation of AO plate fixation systems, and it yields good clinical efficacy and satisfaction according to clinical surveys [1,2,3]

  • Different forms of 3D printing technology and many additive processes are available. Their differences lie in the production of layered parts and materials, including selective laser melting (SLM), direct metal laser sintering (DMLS), selective laser sintering (SLS), and fused deposition modeling (FDM)

  • Relative tests have been conducted to measure their stiffness, and the results suggest that the mechanic behavior of the biomaterials in the cellular microstructure is similar to a cancellous bone [9]; it is suitable for printing implants or prostheses using electron beam melting (EBM) for clinical applications

Read more

Summary

Introduction

The locking compression plate (LCP) is part of the newest generation of AO plate fixation systems, and it yields good clinical efficacy and satisfaction according to clinical surveys [1,2,3]. The LCP stability depends on the angular interface between the screw and plate rather than the friction force between the plate and bone. On. Electron beam melting (EBM) is a form of 3D printing; 3D printing technology rapidly manufactures objects with various complex shapes based on a computer-aided design model or computed tomography data. Different forms of 3D printing technology and many additive processes are available. Their differences lie in the production of layered parts and materials, including selective laser melting (SLM), direct metal laser sintering (DMLS), selective laser sintering (SLS), and fused deposition modeling (FDM). Other researchers use different advanced technologies to cure the liquid material, such as stereo lithography (SLA) and laminated object manufacturing (LOM)

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.