Abstract

Longitudinal cutting is the most common process in steel structure manufacturing, and the man-hours of the process provide an important basis for enterprises to generate production schedules. However, currently, the man-hours in factories are mainly estimated by experts, and the accuracy of this method is relatively low. In this study, we propose a system that predicts man-hours with history data in the manufacturing process and that can be applied in practical structural steel fabrication. The system addresses the data inconsistency problem by one-hot encoding and data normalization techniques, Pearson correlation coefficient for feature selection, and the Random Forest Regression (RFR) for prediction. Compared with the other three Machine-Learning (ML) algorithms, the Random Forest algorithm has the best performance. The results demonstrate that the proposed system outperforms the conventional approach and has better forecast accuracy so it is suitable for man-hours prediction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call