Abstract

Difficult-to-cut materials are being increasingly used in many industries because of their superior properties, including high corrosion resistance, heat resistance and specific strength. However, these same properties make the materials difficult to machine using conventional machining techniques. Laser-assisted milling (LAM) is one of the effective method for machining difficult-to-cut materials. In laser-assisted milling, the machining occur after the workpiece is locally preheated using a laser heat source. Laser-assisted milling has been studied by many researchers on flat workpiece or micro end-milling. However, there is no research on the curved shape using laser assisted milling. This study investigated the use of laser-assisted milling to machine a three-dimensional curved shape workpiece based on NURBS (Non-uniform rational b-spline). A machining experiment was performed on Inconel 718 using different tool paths (ramping, contouring) under various machining conditions. Finite elements analysis was conducted to determine the depth of cut. Cutting force, specific cutting energy and surface roughness characteristics were measured, analyzed and compared for conventional and LAM machining. LAM significantly improved these machining characteristics, compared to conventional machining. There results can be applied to the laser-assisted milling of various three-dimensional shapes.

Highlights

  • Nickel-based alloys and titanium alloy has high properties, so using increased many industrial fields such as precision machine, aerospace, engine, turbine blade, semiconductor

  • The findings of this study, the following conclusion are: (1) Before the machining experiment, a thermal analysis was performed to determine the effective depth of cut

  • The reason for improvement of machinability in the laser-assisted machining (LAM), due to the materials was softened by laser heat source, the decreased in vibration of cutting tool in the machining

Read more

Summary

Introduction

Nickel-based alloys and titanium alloy has high properties, so using increased many industrial fields such as precision machine, aerospace, engine, turbine blade, semiconductor. Difficult-to-cut materials are difficult to conventional machining, because they have high-temperature strength, high abrasion resistance, and corrosion resistance [1,2]. Inconel 718 is one of the nickel-based superalloy used mainly in the engine, blade of the aerospace industries [3]. For machining of the Inconel 718, minimum quantity lubrication method, cryogenic machining and thermally-assisted machining have been studied. Thermally-assisted machining is developed for machining of difficult-to-cut materials. Laser-assisted machining (LAM) is one of most effective method in the thermally assisted machining. The machining surface is softened using laser heat source [4,5,6]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.