Abstract

Electrodeposition of the Co–Ni/Cu multilayer films was carried out in sulfate solution. Cyclic voltammetry and current transient techniques were utilized to characterize the multilayer system and to obtain the nucleation and growth mechanism. The cyclic voltammograms clearly showed that electrodeposition of cobalt–nickel alloy layer was controlled by a kinetic process, where copper ions were reduced under diffusion-controlled mechanism. In addition, the current transients revealed that nucleation mechanism was instantaneous with a typical three-dimensional growth process. The microstructure of the Co–Ni/Cu films was also changed with overpotential. In this system, the growth of multilayer films was observed as layer-by-layer structure up to −1.3 V versus SCE.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.