Abstract

Cancer-cell invasion is a complex biological process involving cell migration through the extracellular matrix, which is driven by haptotaxis, and the interactions between cancer cells and the surrounding matrix. In this paper, a three-dimensional haptotaxis model that simulates the migration of a cancer cell population, including cell–cell adhesion and cell–matrix adhesion, is proposed. We employ a diffuse interface model that incorporates the mechanism of haptotaxis and the interface energy of cancer cells as well as that between cancer cells and the matrix. The semi-implicit Fourier spectral scheme is applied for high efficiency and numerical stability. The simulations systematically reveal the dynamics of cancer-cell migration and the effect of interface energy on the invasion of cancer cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.