Abstract

This study presented an integration platform for a methanol reformer and high-temperature proton exchange membrane fuel cell (PEMFC). The methanol micro-reformer was combined with the catalytic reaction section and reforming section, whereas the catalytic reaction section with Pt catalysis maintained the constant temperature environment for a reforming process. SRM reforming results showed that 74 to 74.9% hydrogen and 23.5 to 25.7% of carbon dioxide in the mixture product, and less than 2% of carbon monoxide, was produced. Using the reforming product of low carbon monoxide concentration and the highest methanol conversion rate, a micro reformer link with a fuel cell integration experiment was performed. Results showed a high temperature PEMFC with 3 to 4 W power output under methanol flow rates of 15 ml/hr. Due to the lower hydrogen pressure supplied from the micro reformer, the fuel cell power output may become unstable. © 2010 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library (wileyonlinelibrary.com). DOI 10.1002/htj.20322

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.