Abstract

Additive Manufacturing (AM) technologies have been emerged as a fabrication method to obtain engineering components within a short span of time. Desktop 3D printing, also referred as additive layer manufacturing technology is one of the powerful method of rapid prototyping (RP) technique that fabricates three dimensional engineering components. In this method, 3D digital CAD data is converted directly to a product. In the present investigation, ABS + hydrous magnesium silicate composite was considered as the starting material. Mechanical properties of ABS + hydrous magnesium silicate composite material were evaluated. ASTM D638 and ASTM D760 standards were followed for carrying out tensile and flexural tests, respectively. Samples with different layer thickness and printing speed were prepared. Based on the experimental results, it is suggested that low printing speed, and low layer thickness has resulted maximum tensile and flexural strength, as compared to all the other process parameters samples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call