Abstract
Abnormal heating of composite insulators of high-voltage transmission lines concentrate at its end, especially in a high-humidity environment. In order to study the influence of end-sheath aging and moisture absorption on abnormal heating of composite insulators, in this paper, we first discuss the appearance test, temperature rise test, and dielectric characteristic test conducted on 110 kV decommissioned composite insulators. Test results indicated the temperature rise in composite insulators increased with ambient humidity, but temperature rise was not severely affected by surface contamination of its shed and sheath; in dry environments, the dielectric constant and dielectric loss factor of high-voltage end sheaths are higher than of those of medium- and low-voltage end sheaths, and the loss effect becomes more severe after moisture absorption in a high-humidity environment. After the tests, the authors established a COMSOL simulation model of composite insulators, to analyze changes in the electric field and thermal field of the end sheath of composite insulators due to the coupling of electric and thermal fields. It was concluded that the dielectric constant of a high-voltage end sheath of the composite insulator increased after moisture absorption, distorting the partial electric field on the surface; meanwhile, the dielectric loss factor increased significantly after water molecules intruded into the aging layer of the sheath as polar molecules. Therefore, the dielectric loss (leakage conductance loss and lossy polarization loss) caused by aging and moisture absorption of the sheath surface under partially high field strength in the high-humidity environment was the leading cause of abnormal heating at the high-voltage end of composite insulators. The conclusion of this paper serves as an important reference for revealing the causes of abnormal heating of composite insulators in high-humidity environments and the influence mechanism of external factors on abnormal heating.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.