Abstract

Using a trace polychlorinated-ρ-dibenzodioxins and dibenzofurans (PCDD/Fs) stabilizing generator, an experimental study related to the influence of temperature (150, 165, and 180 °C) and activated carbon (AC) dosage (0.10, 0.15, and 0.20 g) on the adsorption effect of gas-phase PCDD/Fs via coal-based AC was conducted. Increasing the AC dosage is the most efficient method to improve the PCDD/Fs adsorption efficiency from 65.8% (0.10 g) to 93.0% (0.20 g) at 150 °C in an exponential trend. Both the polychlorinated-ρ-dibenzodioxins (PCDD)/polychlorinated dibenzofurans (PCDF) ratio and the Cl-PCDD/Fs value showed positive correlations, with the AC dosage under the same temperature. Increasing adsorption temperature declined the adsorption capacity of AC, resulting in the exponentially decreased average I-TEQ value adsorbed per gram of AC, from 131.3 ng TEQ/Nm3 (150 °C) to 55.9 ng TEQ/Nm3 (180 °C). The coal-based AC used in this study preferred to adsorb lower chlorinated PCDD/Fs, tetrachlorianted dibenzo-p-dioxin and dibenzofurans (TCDD/Fs), and pentachlorianted dibenzo-p-dioxin and dibenzofurans (PeCDD/Fs) than highly chlorinated PCDD/Fs, heptachlorianted dibenzo-p-dioxin and dibenzofurans (HpCDD/Fs), hexachlorinated dibenzo-p-dioxin and dibenzofurans (HxCDD/Fs), and octachlorianted dibenzo-p-dioxin and dibenzofurans (OCDD/Fs), which was aggravated by the increasing temperature. The characterization of the surface properties of AC revealed that slight oxidation occurred on the AC surface during the adsorption process, introducing oxygen to the competitive adsorption. In addition, it was found in this study that an increased temperature led to a higher content of hydrophilic carboxyl and anhydride groups and weakened π-π interactions, which were also partly responsible for the negative impact of the increasing temperature on the AC adsorption capacity. The results of this study can contribute to the operation optimization for controlling PCDD/F emissions from municipal solid waste incineration (MSWI).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call