Abstract

In this study, a power compensation control algorithm was designed and validated for commercial 100 kW medium wind turbine models for power compensation due to additional generator loss. Generally, torque control considering generator efficiency is applied to a controller of a medium wind turbine; however, a control corresponding to a decrease in generator efficiency due to the surrounding environment is not possible. There is a possibility that an additional generator loss may occur due to the surrounding environment of the wind turbine already installed, and accordingly, a power compensation control algorithm is required because power is expected to decrease. The power compensation control algorithms may be divided into three methods according to a control strategy, and three power compensation control algorithms were explained and designed. The proposed power compensation control algorithms were validated using DNV’s Bladed program. The simulation conditions were selected at an average wind speed of about 18 m/s and normal turbulence model (NTM) Class A, and the additional generator loss was assumed to be 15%. The simulation comparison showed that the original power control algorithm had a deviation of 15.00% from the rated power due to a 15% generator loss, and the designed three power compensation control algorithms had a deviation of up to 0.05%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call