Abstract

Reliability is nowadays considered a key requirement in wireless sensor networks for their increasing diffusion in various Internet of Things applications. However, radio interference from various sources may heavily affect the performance of wirelessly connected embedded devices, resulting into increased packet collisions and congestions. There is therefore a widely recognized need of both theoretical and practical investigations capable of shedding light on the factors affecting the operativeness of sensor networks subject to interference. In this paper, we investigate the role of packet length into the reliability and energy efficiency of low-power medium access protocols. Specifically, we propose a mathematical model to explore the functional dependence of the reliability of a pair of sensor nodes under interference from packet length. We also present a wide range of experimental evaluations aimed at validating the model and at providing novel insights on dependability issues. In particular, we assess the performance of Contiki's default medium access control layer (together with that of an always listening receiver, as a baseline) in terms of packet loss rate and energy efficiency for varying payload lengths. Experimental results highlight the interplay between packet size and interference and in particular the tradeoff between the robustness against interference and the overhead imposed to communication as a function of the length of data packets. The Pareto curve describing the energy efficiency as a function of the packet loss rate, demonstrates the existence of intermediate packet size representing an optimal choice for balancing energy consumption and communication reliability, enabling adequate system dimensioning at design-level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.