Abstract
Abstract In order to distinguish the differences in the heterogeneous fractal structure of porous graphite adopted in the filtration and impregnation, the fractal dimensions (FDs) were obtained by the mercury intrusion porosimetry (MIP) to calculate the volumetric FDs of ten graphite samples, following the fractal theory. The FD expression of the tortuosity along with all the parameters from the MIP test was optimized to simplify the calculation. In addition, the percolation evolution process of mercury in the porous media was analyzed based on the data collected in the experiment. According to the analysis conducted, the FDs in the backbone formation regions of samples varied from 2.695 to 2.984, with 2.923 to 2.991 in the percolation regions and 1.224 to 1.544 in the tortuosity. Based on the correlation coefficients ( R 2 ) ({R}^{2}) ranging between 0.906 and 0.999, and the root mean square errors ranging between 0.0001 and 0.0065 mL g−1, a high level of reliability was identified. According to the MIP test, the mercury distribution in porous graphite demonstrated a transitional process from the local aggregation, the gradual expansion, the infinite cluster connection to the global connection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.