Abstract

As recognized previously, a minimum-length nozzle has the smallest possible throat-to-exit length that is still capable of maintaining uniform supersonic flow at the nozzle exit. In the present study, for the flow of moist air through a nearly minimum-length nozzle designed by the method of characteristics, the effects of nonequilibrium condensation on the uniformity of flow properties, the momentum efflux, and the flow distortion at the nozzle exit plane are discussed by experiment and numerical analysis of a third-order Total Variation Diminishing (TVD) finite difference scheme. The onset and zone of nonequilibrium condensation in a minimum-length nozzle are quite different from those of a general convergent-divergent supersonic nozzle. We know that the uniformity of flow properties at the nozzle exit with regard to the flow with nonequilibrium condensation in a minimum-length nozzle cannot be guaranteed. On the other hand, owing to the positions of the onset of condensation at the incident region of expansion waves from the sharp corner just downstream of the nozzle throat, the deceleration gradient and magnitude of heat released from the process of nonequilibrium condensation to the surrounding of ϕ0=60% are greater than those of ϕ0=70% in the case of T0=290K. Furthermore, it has been determined that the decrease in efflux of momentum from the nozzle exit for the stagnation relative humidity of ϕ0=70%(T0=290K), which corresponds to the case with nonequilibrium condensation shock, is 6.8% smaller than that of isentropic expansion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call