Abstract

The focus of the paper is mainly on the existence of limit cycles of a planar system with third-degree polynomial functions. A previously developed perturbation technique for computing normal forms of differential equations is employed to calculate the focus values of the system near equilibrium points. Detailed studies have been provided for a number of cases with certain restrictions on system parameters, giving rise to a complete classification for the local dynamical behavior of the system. In particular, a sufficient condition is established for the existence of k small amplitude limit cycles in the neighborhood of a high degenerate critical point. The condition is then used to show that the system can have eight and ten small amplitude (local) limit cycles for a set of particular parameter values.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call