Abstract
In the present work the evolution of viscous drops oscillating under the action of surface tension is tackled. Thanks to its structure, the SPH scheme allows for an analysis of the energy balance that is rarely addressed to in the general Computational Fluid Dynamics literature for this kind of flows. A procedure for checking the consistency between the energy of the surface-tension force and the free-surface evolution is proposed. Such a procedure relies on well-known analytical relations for the surface tension and on the evaluation of the free-surface area through a level-set function. Several test cases, in both two and three dimensional frameworks, are considered for validation. The study is performed by selecting a specific SPH scheme with a specific single-phase surface tension model. In any case, the procedure proposed is general and extendable to other SPH surface tension models and SPH schemes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Computer Methods in Applied Mechanics and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.