Abstract

PurposeTo use distinct element simulation (PFC2D) to investigate the relationships between microparameters and macroproperties of the specimens that are modeled by bonded particles. To determine quantitative relationships between particle level parameters and mechanical properties of the specimens.Design/methodology/approachA combined theoretical and numerical approach is used to achieve the objectives. First, theoretical formulations are proposed for the relationships between microparameters and macroproperties. Then numerical simulations are conducted to quantify the relationships.FindingsThe Young's modulus is mainly determined by particle contact modulus and affected by particle stiffness ratio and slightly affected by particle size. The Poisson's ratio is mainly determined by particle stiffness ratio and slightly affected by particle size. The compressive strength can be scaled by either the bond shear strength or the bond normal strength depending on the ratio of the two quantities.Research limitations/implicationsThe quantitative relationships between microparameters and macroproperties for parallel‐bonded PFC2D specimens are empirical in nature. Some modifications may be needed to model a specific material. The effects of the particle distribution and bond strength distribution of a PFC2D specimen are very important aspects that deserve further investigation.Practical implicationsThe results will provide guidance for people who use distinct element method, especially the PFC2D, to model brittle materials such as rocks and ceramics.Originality/valueThis paper offers some new quantitative relationships between microparameters and macroproperties of a synthetic specimen created using bonded particle model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.