Abstract

Characterization of the interference patterns observed in B-mode images (i.e., speckle statistics) is a valuable tool in tissue characterization. However, changes in echo amplitudes unrelated to speckle, including power loss due to attenuation and diffraction, can bias these metrics, undermining their utility. Tissue with high attenuation such as the uterine cervix are especially affected. The purpose of this study was to demonstrate and quantify the effects of attenuation and diffraction on speckle statistics and to propose methods of compensation. Analysis was performed on simulated diffuse scattering phantoms of varying attenuation with simulated transducers at 9 and 5 MHz center frequency. Application in the in vivo macaque cervix using a clinical scanner is also presented. Nakagami and homodyned K distribution parameters were calculated in parameter estimation regions (PERs) of varying size within simulations and experiments. Changes in speckle statistics parameters with respect to PER size and depth were compared with and without two different compensation schemes. It has been shown that compensation for attenuation and diffraction is necessary to produce speckle statistics estimates that do not depend on medium attenuation or PER size. Reducing the dependence on these factors connects speckle statistics estimates more closely with the microstructure of the probed medium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.