Abstract

The influence of a Mg-deficient diet on blood pressure and various hormonal systems was examined in Wistar rats (WR) and spontaneously hypertensive rats (SHR). The WR and SHR were individually divided into 2 groups. The Mg-deficient diet was given to one group, and a Mg-containing diet was given to the other group for 3 weeks. During this experimental period, the body weight, blood pressure, urine volume, blood and urinary electrolytes, plasma steroid hormones, plasma renin activity (PRA), and urinary hormones [kinin, prostaglandin E2 (PGE2), 6-keto-prostaglandin F1 alpha (6-keto-PGF1 alpha), and noradrenaline] were examined. Although no significant difference in body weight was observed between the Mg-deficient and Mg-containing diet groups in either the WR or SHR (because the experiments were performed in a pair-fed fashion in both kinds of rat), the blood pressure was increased in the Mg-containing diet group but was unchanged in the Mg-deficient diet group. As regards changes in electrolytes, a decreased urinary excretion of Mg and significantly increased urinary excretion of P were observed in the Mg-deficient diet group in both the WR and SHR. Furthermore, decreased levels of serum Mg and P and increased levels of serum Ca were also noted. In the WR group, the urinary excretion of noradrenaline was significantly increased in the Mg-deficient diet group as compared to the Mg-containing diet group. However, the change was reversed in the SHR group. The plasma steroid hormones and PRA were both significantly low in the Mg-deficient diet group in both the WR and SHR. The urinary excretions of PGE2, 6-keto-PGF1 alpha, and kinin showed no significant differences between the two diet groups. The above results indicate that blood pressure is not affected by the Mg-deficient diet in either the WR or SHR, and the possible participation of the sympathetic nervous system in the mechanism of control of blood pressure may differ somewhat between the WR and SHR. In addition, Mg ion was found to play an important role in the biosynthesis of renin and steroid hormones but to have no such significant role in the urinary excretions of kinin, PGE2, and 6-keto-PGF1 alpha.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.