Abstract

Young’s modulus has a strong effect on the mechanical behavior of elastic–plastic materials, such as elastic stiffness, elastic recovery, and potential energy. Since springback prediction is important in the sheet metal forming process, many of Young’s modulus studies have been focused on capturing the amount of springback. This work investigated the effect of Young’s modulus modeling focusing on energy conservation point. For this study, three representative concepts of Young’s modulus modeling (fixed modulus, chord modulus, and nonlinear modulus models) were employed. The three modulus models were coupled with the Chaboche kinematic hardening, and implemented into the ABAQUS User-defined material subroutine. The models were used to simulate cyclic loading, monotonic loading conditions, and 2D-draw bending process including the springback prediction. The models showed good agreement with the measured data in the numerical studies. However, in the chord modulus model, a negative potential energy phenomenon was detected during the elastic recovery path, which is unrealistic, while the fixed and nonlinear modulus models keep the energy conservation law. This work discusses the reason for the negative potential energy computation based on the energy dissipation, and presents a numerical method to compensate the negative potential energy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.