Abstract

The main purpose of this paper is to demonstrate that besides the stress triaxiality parameter, the Lode angle, which can be related to the third invariant of the deviatoric stress tensor, also has an important effect on ductile fracture. This is achieved by conducting a series of micromechanics analyses of void-containing unit cells and experimental-numerical studies of carefully designed specimens experiencing a wide range of stress states. As a result, a fracture criterion is expressed in terms of the equivalent failure strain as a function of the stress triaxiality and the Lode angle (or the third invariant of the stress deviator) and this function is calibrated for a DH36 steel plate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.