Abstract

Nanosized metal oxide-incorporated drug carriers have received significant attention due to their biocompatibility, mechanical strength, controlled drug release, and biodegradability. Herein, an attempt was made to fabricate polycaprolactone-based electrospun nanofiber mats involving the 5-fluorouracil (5Fu) drug, MgO nanoparticle, methyl cellulose, and polyethylene glycol. The chemical interactions, surface wettability, mechanical properties, structural and morphological changes, and thermal stability were studied by the respective analyses. The ionic interaction between 5Fu, MgO, and polymers were found to be responsible for the controlled drug release. Zero-order kinetic and model data also revealed that a controlled drug release pattern was observed in a period of 16 days. Furthermore, the nanofiber mats were subjected to cytotoxicity studies against MDA-MB-231 cancer cell line and the results showed higher cytotoxicity in a short time of 24 h and less toxicity to normal L929 fibroblast cell line. The apoptosis in cancer cell lines was also tested by AO/PI staining assay and confirmed by fluorescence microscopy. In addition, the growth inhibition of several bacterial and fungal strains was tested for the mats and the results exhibited good inhibition activity. Hence, the reported nanofiber drug carrier was found to be an efficient implant for the controlled release of anticancer drug along with other significant properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call