Abstract

The deformation behaviours and microstructure transformations during the cold rolling process of Al-1.4Fe-0.2Mn alloy sheets prepared from 99.7% pure aluminium were investigated by means of hardness-testing, transmission electron microscopy (TEM) and energy dispersive spectrometer (EDS). The phenomena of work hardening and work softening were observed. The hardness of Al-1.4Fe-0.2Mn alloy sheets increased with the increasing of cold rolling reduction firstly, and reached to a peak at 80% cold rolling reduction, meaning work hardening. However, with further increasing of cold rolling reduction, the hardness decreased, which indicates work softening. During the initial deformation stage, the dislocation density and the number of sub-grain structures increased gradually, and many dislocations formed tangles, resulting in work hardening. When the cold rolling reduction exceeded 80%, the dislocation density decreased and sub-grain structures polygonized, leading to work softening. The forming of Mn, Fe and Si bearing compounds is an important reason for the work softening due to lowering solid solution content.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.