Abstract
Building shading forms are becoming increasingly diversified, driven by both building performance requirements and architectural aesthetics. The application of computer technology in shading design and performance evaluation is becoming increasingly popular. This study adopted a parametric performance design method and created a one-click workflow for parametric curved mesh shading design and performance evaluation based on the Grasshopper platform and Ladybugtools. Applying this workflow, this paper takes five typical cities in different climate zones in China as examples to analyze the impact rules of curved mesh shading parameters (blade width, number of horizontal grids, and number of vertical grids) on building daylighting and energy consumption and explore the application potential of curved mesh shading. This study found that curved mesh shading has the best potential to improve daylighting in Harbin and can increase the annual average UDIa (300~3000 lux) by 7.42%. In Guangzhou, curved mesh shading has the highest potential for energy saving, which can reduce annual energy consumption by 14.8%. This study can provide theoretical, methodological, and data support for the optimal design of curved mesh shading.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.