Abstract

In this study, the tribocorrosion of electroplated Ni-W-P alloy coating (3.9 to 4.3 at. pct W and 13.1 to 14.7 at. pct P) on a cylindrical copper substrate was investigated using a block-on-ring tester. The wear and corrosion performance of the coating and their synergic effect were measured at different overpotentials. Under simple immersion corrosion conditions with an increasing overpotential from open-circuit potential to +400 mVSCE, the surface of the coating initially showed no obvious corrosion, eventually developing pitting holes that subsequently enlarged and showing the spreading of cracks. The corrosion products were a mixture of NiO, WO3, and phosphate, and the corroded surface was P-rich, porous, and less crystalline than the pristine coating. Corrosion and mechanical wear had little influence on tribocorrosion at low overpotential values. However, the synergic effect drastically became stronger at high overpotentials. The surface was full of large pitting holes and grooves. The weight loss due to the corrosion component increased linearly with the overpotential but was limited in comparison with the wear component, which was the main cause of weight loss. On the other hand, the friction coefficient first increased and then decreased with an increase in overpotential. Both the surface morphology of the corroded coating and the thickness of the corrosion oxide play important roles in this friction characteristic.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.