Abstract

By the mapping observations simultaneously at the 12CO (J=1-0), 13CO (J=1-0), and C18O (J=1-0) lines on the area of 24’×24’ (12 pc×12 pc) of the star forming region AFGL 5157, we have obtained the distribution and averaged physical parameters for the respective 13CO and C18O cores of this molecu- lar cloud. At the edge of the molecular cloud, the isotopic abundance ratio is X [(13CO)/(C18O)] ≈ 10, close to the ratio of a giant molecular cloud. The viral masses of the 13CO and C18O cores are less than the masses of the molecu-lar cloud cores, so the molecular cloud cores are gravitationally unstable, and the C18O molecular cloud core is more easy to collapse. The column density distributions of the C18O molecular cloud core in the northeast and southwest directions are, respectively, 1.1 × 1023× z−0.43 and 4.6 × 1025× z−0.58, where z is the distance from the center of the molecular cloud core. The high velocity molecular outflow has been confirmed from our 12CO spectra, the mass loss rate of the outflow has been estimated, and the mass-velocity relation of the outflow is fitted by a power-law function of m ∝ v−1.8. The star formation rate of the 13CO molecular cloud core is as high as 23%, probably, under the influence ofthe reflection nebula NGC 1985, this region is forming medium and large mass stars or clusters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call