Abstract

SO 2, which is an air pollutant causing acid rain and smog, can be converted into elemental sulfur in direct sulfur recovery process (DSRP). SO 2 reduction was performed over catalyst in DSRP. In this study, SnO 2-ZrO 2 catalysts were prepared by a co-precipitation method, and CO and coal gas, which contains H 2, CO, CO 2 and H 2O, were used as reductants. The reactivity profile of the SO 2 reduction over the catalysts was investigated at the various reaction conditions as follows: reaction temperature of 300–550 °C, space velocity of 5000–30,000 cm 3/g -cat. h, [reductant]/[SO 2] molar ratio of 1.0–4.0 and Sn/Zr molar ratio of SnO 2-ZrO 2 catalysts 0/1, 2/8, 3/5, 5/5, 2/1, 3/1, 4/1 and 1/0. SnO 2-ZrO 2 (Sn/Zr = 2/1) catalyst showed the best performance for the SO 2 reduction in DSRP on the basis of our experimental results. The optimized reaction temperature and space velocity were 325 °C and 10,000 cm 3/g -cat. h, respectively. The optimal molar ratio of [reductant]/[SO 2] varied with the reductants, that is, 2.0 for CO and 2.5 for coal gas. SO 2 conversion of 98% and sulfur yield of 78% were achieved with the coal gas.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call