Abstract

Bainitic low alloy steel has a complex microstructure exhibiting several types of boundaries. The boundaries in bainitic steel, although certain boundaries are absent with respect to the alloy composition and the manufacturing process, could be typically divided into 4 types; dislocation cell boundary, lath boundary, packet boundary, and prior austenite grain boundary, in increasing order of size. The size and distribution of the respective boundaries are an important factor which controls the mechanical properties of the steels, including brittle fracture. In the present research, the characteristics of the boundaries in the bainitic low alloy steels were investigated in view of misorientation between grains enclosed by the respective boundaries.The alloys investigated were Mn-Mo-Ni low alloy forging steels having chemical compositions shown in TABLE 1. Steel-A was manufactured by the Vacuum Carbon Deoxidation(VCD) process. For the finer prior austenite grain size, Steel-B was produced by the aluminium addition and the silicon killing process. Before EBSD analysis, the microstructures of the alloys were observed using SEM and TEM. EBSD measurements were obtained using a Link OPAL system(Oxford) linked to a JEOL JSM 6300 SEM operating at 15KeV with the sample tilted at 70°.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.