Abstract

Proper disposal of minor actinides (MA), long-lived fission products (LLFPs), and transuranium element (TRU) plays a key role in the sustainable development of fission nuclear power. Adoption of inert matrix fuels (IMFs) can effectively reduce the amount of 237Np and Np element in the spent fuel of present-day commercial power reactors. In order to study the burn-up characteristics of IMFs caused by the unique composition, burn-up calculations and MA accumulation of two typical IMFs, PuO2 + ZrO2 + MgO and PuO2 + ThO2, are performed in this paper. Results indicate that kinf at beginning of life (BOL) and reactivity drop with burn-up for PuO2 + ZrO2 + MgO are much larger than those of PuO2 + ThO2 IMF. The yields of 237Np and Np element in IMFs are two orders smaller than those of UO2 and mixed oxide (MOX) fuels. For the same PuO2 volume fraction and a certain burn-up, the masses of 237Np, Np element, and 241Am for PuO2 + ZrO2 + MgO are smaller than those of PuO2 + ThO2; however, the mass of total MA is larger. IMF has high destruction efficiencies of TRU and plutonium (Pu). The results and conclusion provide basic data for the ongoing IMF design and application study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.