Abstract
In the framework of genetic fuzzy systems, the computational time required by genetic algorithms for generating fuzzy rule-based models from data increases considerably with the increase of the number of instances in the training set, mainly due to the fitness evaluation. Also, the amount of data typically affects the complexity of the resulting model: a higher number of instances generally induces the generation of models with a higher number of rules. Since the number of rules is considered one of the factors which affect the interpretability of the fuzzy rule-based models, large datasets generally bring to less interpretable models. Both these problems can be tackled and partially solved by reducing the number of instances before applying the evolutionary process. In the literature several algorithms of instance selection have been proposed for selecting instances without deteriorating the accuracy of the generated models.The aim of this paper is to analyze the effectiveness of 36 training set selection methods when combined with genetic fuzzy rule-based classification systems. Using 37 datasets of different sizes we show that some of these methods can considerably help to reduce the computational time of the evolutionary process and to decrease the complexity of the fuzzy rule-based models with a very limited decrease of their accuracy with respect to the models generated by using the overall training set.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.