Abstract

BackgroundAs possible sources of natural bioactive molecules, the plant essential oils and extracts have been used globally in new antimicrobial compounds, food preservatives, and alternatives to treat infectious disease.MethodsIn this research, the antimicrobial activities of chloroformic and methanolic extracts of Sophora flavescens, Rhaponticum repens, Alhagi maurorum, Melia azedarach, Peganum harmala, and Juncus conglomeratus were evaluated against 8 bacteria (S. aureus, B. subtilis, R. toxicus, P. aeruginosa, E. coli, P. syringae, X. campestris, P. viridiflava) and 3 fungi (Pyricularia oryzae, Fusarium oxysporum and Botrytis cinerea), through disc diffusion method. Furthermore, the essential oils of plants with the highest antibacterial activity were analyzed utilizing GC/MS. Moreover, the tested plants were exposed to screening for possible antioxidant effect utilizing DPPH test, guaiacol peroxidas, and catalase enzymes. Besides, the amount of total phenol and flavonoid of these plants was measured.ResultsAmong the tested plants, methanolic and chloroformic extracts of P. harmala fruits showed the highest antibacterial activity against the tested bacteria. Besides, the investigation of free radical scavenging effects of the tested plants indicated the highest DPPH, protein, guaiacol peroxidase, and catalase in P. harmala, M. azedarach, J. conglomeratus fruits, and J. conglomeratus fruits, respectively. In addition, the phytochemical analysis demonstrated the greatest amounts of total phenolic and flavonoid compositions in J. conglomeratus and P. harmala, respectively.ConclusionThe results indicated that these plants could act as a promising antimicrobial agent, due to their short killing time.

Highlights

  • The plant essential oils and extracts, considered as possible sources of natural bioactive molecules, have been utilized globally in new antimicrobial compounds, food preservatives, and alternatives to treat infectious disease [1]

  • The results showed that Eucalyptus globulus had antimicrobial activity versus Chromobacterium, Escherichia coli, Klebsiella pneumonia, Enterobacter faecalis, Pseudomonas aeruginosa, Proteus mirabilis, Salmonella partyphy, S. typhi, Bacillus subtilis, and Staphylococcus aureus bacteria and did not show any antifungal activity on the tested fungus

  • Hayet et al [9] evaluated the antibacterial activities of ethyl acetate, chloroform, butanol and methanol extracts of peganum harmala leaves against some pathogens containing 11 g-positive and 6 g-negative bacteria, among which methanol and chloroform extracts exhibited a higher antibacterial activity versus gram-positive than gram-negative bacteria

Read more

Summary

Introduction

The plant essential oils and extracts, considered as possible sources of natural bioactive molecules, have been utilized globally in new antimicrobial compounds, food preservatives, and alternatives to treat infectious disease [1]. Hayet et al [9] evaluated the antibacterial activities of ethyl acetate, chloroform, butanol and methanol extracts of peganum harmala leaves against some pathogens containing 11 g-positive and 6 g-negative bacteria, among which methanol and chloroform extracts exhibited a higher antibacterial activity versus gram-positive than gram-negative bacteria. Sen and Batra [11] examined the antimicrobial activity of ethanol, methanol, petroleum ether and water extracts of Melia azedarach L. leaves versus 8 human pathogens including Staphylococcus aureus, Bacillus cereus, Pseudomonas aeruginosa, Escherichia coli, Aspergillus flavus, Aspergillus niger, Fusarium oxisporum, and Rhizopus stolonifera. Ahmad et al [12] studied the antibacterial effect of Alhagi maurorum leaves extract and showed that the crude extract, chloroform, and ethyl acetate fractions had prominent effects, giving over 80% inhibition versus Bacillus anthrax. As possible sources of natural bioactive molecules, the plant essential oils and extracts have been used globally in new antimicrobial compounds, food preservatives, and alternatives to treat infectious disease

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.