Abstract
Minimizing the residual impurity gases is a key factor for reducing temporal dark image sticking. Therefore, this paper uses a vacuum-sealing method that minimizes the residual impurity gases by enhancing the base vacuum level, and the resultant change in temporal dark image sticking is then examined in comparison to that with the conventional sealing method using 42-in. ac-PDPs with a high Xe (11%) content. As a result of monitoring the difference in the display luminance, infrared emission, and perceived luminance between the cells with and without temporal dark image sticking, the vacuum-sealing method is demonstrated to reduce temporal dark image sticking by decreasing the residual impurity gases and increasing the oxygen vacancy in the MgO layer. Furthermore, the use of a modified driving waveform along with the vacuum-sealing method is even more effective in reducing temporal dark image sticking.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.